Product Overview

F-502 Phenolic Prepregs

Park's F-502 is a MIL-R-9299 phenolic resin system suitable for impregnation on any MIL-C-9084 fabric with a compatible finish. F-502 is used in the manufacture of ablative reinforcements in rocket nozzles, as well as ducting and secondary structures.

Key Features & Benefits

- Provides a combination of high-strength and ablative properties for demanding applications
- Low thermal expansion
- Good Tack and Drape properties
- Conforms to MIL-R-9299 Type B

Product Forms

- Available on a wide variety of reinforcements, including fiberglass, graphite, and quartz.
- Also available as a Molding Compound and Bias Tape
- Solution coated fabrics up to 60 inches wide
- Compatible with Autoclave or Press Molding processes

Applications / Qualifications

- Rocket Nozzles
- Ducting
- Secondary Structures

Qualified Specifications

- GMS4001

For Information about Park's materials:

Newton, KS	+1.316.283.6500
info@parkaerospace.com	
www.parkaerospace.com	

Technical Datasheet

F-502 Phenolic Prepregs

Prepreg Physical Properties

Reinforcement	3K 8HS PAN	12K GA090 UniTape	7628 E-Glass	7781 E-Glass	581 Quartz	Silica
Fabric Area Weight (gsm)	617	300	203	303	475	610
Prepreg Resin Content (%)	32 – 38	32 – 38	36 – 44	31 – 37	33 – 39	31 – 37
Resin Flow (325°F, 103kPa) (%)	10 – 25	5 – 20	20 - 32	5 – 20	5 – 20	10 - 30
Volatiles (275°F, 8 min) (%)	2 – 8	3 – 5	5 – 8	2 – 5	2 – 5	6 – 10
Gel Time (sec)	50-200	50-200	50-100	50-100	50-200	50 - 100

Cured Laminate Physical Properties

Reinforcement	3K 8HS PAN	12K GA090 UniTape	7781 E-Glass	581 Quartz	Silica	
Per Ply Thickness	0.016	0.010	0.009	0.012	0.028	
Specific Gravity ASTM-D-792	1.35	1.45	1.75	1.70	1.7	
Hardness (Barcol) ASTM-D-2583	75	75	70	75	70	
Specific Heat (J/g °F) ASTM-C-351			1.17 (@ 150°F)	0.84 (@ 75°F)		
CTE - with ply 80 - 400°F (ppm/°F) ASTM-D-696				4.5		
CTE – x-ply 80 - 400°F (ppm/°F) ASTM-D-696				19.0		

All test data provided are typical values and not intended to be specification values. For review of critical specification tolerances, please contact a Park representative directly. Park reserves the right to change these values based on a nature process of refining our testing equipment and techniques.

Technical Datasheet

F-502 Phenolic Prepregs

Laminate Mechanical Properties

Reinfor	cement	3K 8HS PAN	12K GA090 UniTape	7781 E-Glass	581 Quartz	Silica
Cure Cycle		325°F	325°F	325°F	325°F	325°F
		Autoclave	1000 psi	Autoclave	Autoclave	1000 psi
Tensile Streng	th, 0° (Ksi)					
75°F	Dry	89	225	51	60	13
500°F	Dry			48		
ASTM-D-638	,					
Tensile Modul	us, 0° (Msi)					
75°F	Dry	8.6	14	3.7	3.5	2.4
500°F	Dry			2.9		
ASTM-D-638	-					
Compressive Strength (Ksi)						
75°F	Dry	77	100	67	65	24
500°F	Dry			38		
ASTM-D-695						
Compressive Modulus (Msi)						
75°F	Dry	9.3	14	3.5	3.6	2.4
500°F	Dry			3.0		
ASTM-D-695						
Flexural Strength (Ksi)						
75°F	Dry	112		71	85	23
500°F	Dry			40		
ASTM-D-790						
Flexural Modulus (MSI)						
75°F	Dry	8.1		3.6	3.5	2.5
500°F	Dry			2.7		
ASTM-D-790						
Snort Beam Si	near (KSI)	4.0				
	Dry	4.8				
ASTM-D-53/9						

All test data provided are typical values and not intended to be specification values. For review of critical specification tolerances, please contact a Park representative directly. Park reserves the right to change these values based on a nature process of refining our testing equipment and techniques.

All test data provided are typical values and not intended to be specification values. For review of critical specification tolerances, please contact a company representative directly.

Park Aerospace Corp. reserves the right to make changes without notice to any products described herein. Park does not assume any liability arising out of the application or use of any product described herein; and it does not grant any license under its patent or other rights or any such rights of others. Park also disclaims all warranties whether expressed, implied or statutory, including implied warranties of merchantability or fitness for a particular purpose.

Aeroglide[®], ALPHA STRUT[™], CoreFix[®], Easycure E-710[®], Electroglide[®], Electrovue[™], Peelcote[™], Powerbond[™], RadarWave[™], SIGMA STRUT[™] and Tin City Aircraft WorksSM are trademarks or servicemarks of Park Aerospace Corp.

Processing Guidelines

F-502 Phenolic Prepregs

Prepreg Storage Life

Out Life: 30 days @ 75°F Shelf Life: 6 months @ 0°F and 3 months @ 40°F (dry) **Store F-502 Silica at 0°F (dry)

Autoclave Cure Cycle

- Apply 24"Hg vacuum (minimum) for 1 hour before beginning heat cycle
- Apply 10 psi autoclave pressure
- Raise product temperature from RT to 250°F at 2 5°F/min
- Increase autoclave pressure to 40 psi, vent vacuum at 15 20 psi
- Hold product at $250 \pm 5^{\circ}F$ for 30 minutes
- Raise product temperature to 325 ± 5°C at 2 5°F/min
- Hold product at cure temperature for 60 90 minutes
- Cool to 150°F at no more than 8°F/min prior to releasing autoclave pressure

Optional Post Cure Cycle for High-Temp Applications

- Heat Rise Rate between soak temperature: 2 -8°F/min
 - \circ 250°F for 2 hours
 - o 300°F for 1 hour
 - o 350°F for 1 hour
 - \circ 400°F for 1 hour
 - 425°F for 1 hour
 - \circ 450°F for 2 hours

Note: The following guidelines are provided to assist Park material users with general recommendations for successful processing. The recommendations are for general review purposes only and process adjustments may be required to achieve optimum results in your specific manufacturing environment.

High Silica Phenolic Autoclave Cure Cycle

- Apply 24"Hg vacuum (minimum) for 1 hour before beginning heat cycle
- Raise product temperature from RT to 200°F at 2 6°F/min
- Apply autoclave pressure of 100 psi, vent vacuum at 15 20 psi
- Raise product temperature to 350°F at 2 6°F /min
- Hold product at 350± 5°F for 60 90 minutes
- Cool to 150°F at 8°F/min prior to releasing autoclave pressure
- Post Cure
 - Heat Oven to 350°F at 2 8°F /min and hold for 2 hours
 - \circ Hold product at 400°F for 4 hours

